2024年河北省专升本考试高等数学(二)(经管、农学类)考试说明
(4)理解函数极值的概念,掌握求函数极值的方法,掌握函数最大值、最小值的求法及其简单应用,会利用导数解决经济学及管理学中的一些简单应用题。
(5)会判断函数图形的凹凸性,会求函数图形的拐点。
三、一元函数积分学
(一) 不定积分
1.知识范围
原函数与不定积分的概念 不定积分的基本性质 基本积分公式 第一换元法(即凑微分法) 第二换元法 分部积分法 简单有理函数、简单无理函数及三角函数有理式的积分。
2.考核要求
(1)理解原函数与不定积分的概念。
(2)理解不定积分的基本性质。
(3)掌握不定积分的基本公式。
(4)掌握不定积分的第一换元法、第二换元法(限于三角代换与简单的根式代换)和分部积分法。
(二) 定积分
1.知识范围
定积分的概念和性质 变上限定积分及其导数 牛顿—莱布尼茨(Newton-Leibniz)公式 定积分的换元法和分部积分法 定积分的应用(平面图形的面积,旋转体的体积) 无穷区间的广义积分的概念与计算。
2.考核要求
(1)理解定积分的概念,理解定积分的基本性质。
(2)理解变上限定积分是其上限的函数及其求导定理,掌握牛顿—莱布尼茨公式。
(3)掌握定积分的换元法和分部积分法。
(4)掌握用定积分求平面图形的面积和简单的封闭平面图形绕坐标轴旋转所成旋转体体积。
(5)了解无穷区间的广义积分的概念,会计算无穷区间的广义积分。
四、多元函数微分学
1.知识范围
多元函数的概念 二元函数的极限与连续的概念 偏导数、全微分的概念 全微分存在的必要条件与充分条件 二阶偏导数 复合函数、隐函数的求导法 多元函数的极值、条件极值的概念 二元函数极值存在的充分条件、必要条件 极值的求法。
2.考核要求
(1)理解多元函数的概念,了解二元函数的几何意义和定义域。了解二元函数极限与连续概念(对计算不作要求)。
(2)理解偏导数的概念,了解全微分的概念和全微分存在的必要条件和充分条件。
(3)掌握二元初等函数的一、二阶偏导数的计算方法,会求全微分。
(4)掌握复合函数一、二阶偏导数的计算方法 (含抽象函数)。
(5)掌握由方程 F(x, y, z) 0 所确定的隐函数 z z(x, y) 的一阶偏导数的求法。
(6)会求二元函数的极值,会求二元函数的最大值、最小值并会解一些简单的应用问题。
五、无穷级数 (一) 常数项级数 1.知识范围
常数项级数收敛、发散的概念 收敛级数的和 级数收敛的基本性质和必要条件 正项级数收敛性的比较判别法、比值判别法 交错级数的莱布尼茨(Leibniz)判别法 绝对收敛与条件收敛。
2.考核要求
(1)理解常数项级数收敛、发散以及收敛级数的和的概念。理解级数收敛的必要条件和基本性质。
(2)掌握几何级数 aqn 的敛散性。
n0
1 1
(3)掌握调和级数 n 与 p 级数 np 的敛散性。
n1 n1
(4)掌握正项级数的比值判别法,会用正项级数的比较判别法。
(5)会用莱布尼茨判别法判定交错级数收敛。
(6)了解级数绝对收敛与条件收敛的概念,会判定任意项级数的绝对收敛与条件收敛。
(二) 幂级数
1.知识范围
幂级数的收敛半径、收敛区间和收敛域 幂级数在收敛区间内的基本性质 函数ex , ln(1 x) ,
1
1 x
的马克劳林(Maclaurin)展开式。
2.考核要求
(1)了解幂级数的概念。
(2)了解幂级数在其收敛区间内的基本性质(连续性,逐项求导与逐项积分)。
(3)掌握求幂级数的收敛半径、收敛域的方法(包括端点处的收敛性)。
(4)会运用ex ,ln(1 x) , 1
1 x
的马克劳林展开式,将一些简单的初等函数展开为 x 或(x x0) 的
幂级数。
六、常微分方程
(一) 微分方程基本概念
1.知识范围
常微分方程的概念 微分方程的阶、解、通解、初始条件和特解。 2.考核要求
(1)了解微分方程的阶、解、通解、初始条件和特解的概念。
(2)会验证常微分方程的解、通解和特解。
(3)会建立一些微分方程,解决简单的应用问题。
(二) 一阶微分方程
1.知识范围
一阶可分离变量微分方程 一阶线性微分方程。 2.考核要求
(1)掌握一阶可分离变量微分方程的解法。
(2)会用公式法解一阶线性微分方程。
七、线性代数
(一) 行列式
1.知识范围
行列式的概念 余子式和代数余子式 行列式的性质 行列式按一行(列)展开定理 克莱姆(Cramer)法则及推论。
2.考核要求
(1)了解行列式的定义,理解行列式的性质。
(2)理解行列式按一行(列)展开定理。
(3)掌握计算行列式的基本方法。
(4)会用克莱姆法则及推论解线性方程组。
(二) 矩阵
1.知识范围
矩阵的概念 矩阵的线性运算 矩阵的乘法 矩阵的转置 单位矩阵 对角矩阵 三角形矩阵 方阵的行列式 方阵乘积的行列式 逆矩阵的概念 矩阵可逆的充分必要条件 伴随矩阵矩阵的初等变换矩阵的秩 初等行变换求矩阵的秩和逆矩阵。
2.考核要求
(1)了解矩阵的概念,了解单位矩阵、对角矩阵和三角形矩阵。
(2)掌握矩阵的线性运算、乘法和矩阵的转置。
(3)会用伴随矩阵法求二、三阶方阵的逆矩阵。
(4)理解矩阵秩的概念,会用初等行变换法求矩阵的秩和逆矩阵,会解简单的矩阵方程。
(三) 线性方程组
1.知识范围
向量的概念 向量组的线性相关与线性无关 向量组的极大无关组 向量组的秩与矩阵的秩的关系 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 齐次线性方程组的基础解系和通解 非齐次线性方程组的通解 用初等行变换求解线性方程组的方法。
感谢您阅读2024年河北省专升本考试高等数学(二)(经管、农学类)考试说明,本文出自:诚为径统招专升本网,转载需带上本文链接地址:https://tzzsb.cwjedu.com/ksjc/58590/p2
- 温馨提示:
- 因考试政策、内容不断变化与调整,诚为径教育网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!