湖南信息学院 2023 年专升本 《高等数学》考试大纲
3.函数可导与连续的关系,要求达到“领会”层次。
3.1 清楚函数在一点连续是函数在该点可导的必要条件。
4.可导函数的和、差、积、商的求导法则,要求达到“综合应用”层次。
4.1 能熟练运用可导函数的和、差、积、商的求导法则。
5. 复合函数的求导法则,要求达到“综合应用”层次。
5.1 熟练掌握复合函数的求导法则。
5.2 对于由多个函数的积、商、方幂所构成的函数,会用对数导法计算其导数。
6.反函数的求导法则,要求达到“识记”层次。
6.1 清楚反函数的求导法则。
7.基本初等函数的导数,要求达到“综合应用”层次。
7.1 熟记基本初等函数的求导公式并能熟练运用。
8.隐函数及其求导法则,要求达到“简单应用”层次。
8.1 理解由函数方程所确定的一元函数(隐函数)的含义。
8.2 会求由一个函数方程所确定的隐函数的导数。
9.高阶导数,要求达到“领会”层次。
9.1 知道高阶导数的定义,了解二阶导数的物理意义。
9.2 会求初等函数的二阶导数。
10.参数式函数的求导法则,要求达到“简单应用”层次。
10.1 理解由参数方程所确定的函数的含义。
10.2 会求参数式函数的一阶与二阶导数。
11.微分的定义,要求达到“领会”层次。
11.1 了解微分作为函数增量的线性主部的含义。
11.2 清楚函数的微分与导数的关系及函数可微与可导的关系。
12.微分的基本公式和运算法则,要求达到“简单应用”层次。
12.1 熟知基本初等函数的微分公式。
12.2 熟知可微函数的和、差、积、商及复合函数的微分法则。
12.3 会求函数的微分。
第四章 导数的应用
1、识记:微分中值定理;曲线的凹凸性和拐点的概。
2、理解:清楚函数的最值及其求法并能解决简单的应用问题。
3、运用:掌握求各种未定式的值的洛必达法则;会用导数的符号判定函数的单调性;会用函数的二阶导数判定曲线的凹凸性和计算拐点的坐标,会求曲线的水平和铅直渐近线。
4、本章考核要求(约 20 分)
1.微分中值定理,要求达到“领会”层次。
1.1 能正确陈述罗尔定理,知道其几何意义。
1.2 能正确陈述拉格朗日中值定理并清楚其几何意义。
1.3 知道导数恒等于零的函数必为常数,导数处处相等的两个函数只能相差一个常数。
2.洛必达法则,要求达到“综合应用”层次。
2.1 清楚应用洛必达法则的条件,能熟练地使用洛必达法则计算0 0和 类型未定式的值。
2.2 能识别其他类型的未定式,并会应用洛必达法则求其值。
3.函数单调性的判定,要求达到“简单应用”层次。
3.1 清楚导数的符号与函数单调性之间的关系。
3.2 会确定函数的单调区间和判别函数在给定区间上的单调性。
3.3 会用函数的单调性证明简单的不等式。
4.函数的极值及其求法,要求达到“综合应用”层次。
4.1 理解函数极值的定义。4.2 知道什么是函数的驻点,清楚函数的极值点与驻点和不可导点之间的关系。
4.3 掌握函数在一点取得极值的两种充分条件。
4.4 会求函数的极值。
5.函数的最值及其应用,要求达到“综合应用”层次。
5.1 知道函数量值的定义及其与极值的区别。
5.2 清楚最大值的求法并能解决比较简单的求最值的应用问题。
6.曲线的凹凸性和拐点,要求达到“简单应用”层次。
6.1 清楚曲线在给定区间上“凹”“凸”的定义。
6.2 会确定曲线的凹凸区间。
6.3 知道曲线的拐点的定义,会求曲线的拐点。
7.曲线的渐近线,要求达到“领会”层次。
7.1 知道曲线的水平和铅直渐近线的定义及其意义,会求曲线的这两类渐近线。
第五章 不定积分
1、识记:清楚微分运算和不定积分运算之间的关系;了解不定积分的性质。
2、理解:原函数和不定积分的概念;不定积分和微分之间的内在联系。
3、运用:掌握不定积分基本公式、熟练掌握不定积分的第一类换元法和常见类型的分部积分法。掌握第二类换元法(限于三角置换、根式置换)
4、考核要求(约 15 分)
1.原函数和不定积分概念及不定积分的基本性质,要求达到“领会”层次。
1.1 清楚原函数和不定积分的定义,了解它们的联系与区别。
1.2 理解微分运算和不定积分运算互为逆运算。
1.2 熟记不定积分的基本性质。
2.基本积分公式,要求达到“简单应用”层次。
2.1 熟记基本积分公式,并能熟练运用。
3.不定积分的换元积分法,要求达到“简单应用”层次。
3.1 能熟练运用第一换元积分法(即凑微分法)。
3.2 掌握第二换元积分法,知道几种常见的换元类型。
3.3 会求比较简单的有理函数的不定积分。
4.不定积分的分部积分法,要求达到“简单应用”层次。
4.1 掌握分部积分法,能熟练地用它求几种常见类型的不定积分。
第六章 定积分及其应用
1、识记:变上限的定积分是变上限的函数及其求导定理;
2、理解:定积分的概念及其几何意义;定积分微元法;牛顿—莱布尼兹公式。
3、运用:用微元法求平面图形的面积,旋转体体积和平面曲线的弧长;用微无
法分析并解决变力作功、液体静压力等实际问题。
4、考核要求(约 15 分)
1. 定积分概念及其几何意义,要求达到“领会”层次。
1.1 理解定积分的概念并了解其几何意义。
1.2 清楚定积分与不定积分的区别,知道定积分的值完全取决于被积函数和积分区间,与积分变量采用的记号无关。
2. 定积分的基本性质和中值定理,要求达到“领会”层次。
2.1 掌握定积分的基本性质。
2.2 能正确叙述定积分的中值定理,了解其几何意义,知道连续函数在区间
上的平均值的概念及其求法。
3 .变上限积分与牛顿—莱布尼茨公式,要求达到“综合应用”层次。
3.1 理解变上限积分是积分上限的函数并会求其导数。
3.2 掌握牛顿—莱布尼茨公式,并领会其重要的理论意义。
3.3 会用牛顿—莱布尼茨公式计算定积分。
感谢您阅读湖南信息学院 2023 年专升本 《高等数学》考试大纲,本文出自:诚为径统招专升本网,转载需带上本文链接地址:https://tzzsb.cwjedu.com/ksjc/38692/p2
- 温馨提示:
- 因考试政策、内容不断变化与调整,诚为径教育网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!