2023年湖南女子学院专升本考试科目《数学》考试大纲
《数学》专升本考试大纲
一、科目基本信息
科目名称:数学
适用专业:计算机科学与技术
参考用书:高等数学 上、下册,黄立宏主编 北京大学出版社 2018年
考试时间:90分钟
总 分:100分
二、考试形式
考试形式:闭卷考试
三、考试内容
一、函数、极限和连续
(一)函数
1、理解函数的概念,会求函数的定义域、表达式及函数值。会求分段函数的定义域、函数值,并会作出简单的分段函数图像。会建立简单实际问题的函数关系式。
2、理解和掌握函数的单调性、奇偶性、有界性和周期性,会判断所给函数的类别。
4、理解和掌握函数的四则运算与复合运算, 熟练掌握复合函数的复合过程。
5、掌握基本初等函数及其简单性质、图象。
6、了解初等函数的概念及其性质。
(二)极限
1、理解极限的概念,会求数列极限及函数在一点处的左极限、右极限和极限,了解数列极限存在性定理以及函数在一点处极限存在的充分必要条件。
2、了解极限的有关性质,掌握极限的四则运算法则(包括数列极限与函数极限)。
3、熟练掌握用两个重要极限求极限的方法。
4、了解无穷小量、无穷大量的概念,掌握无穷小量与无穷大量的关系。会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。会运用等价无穷小量代换求极限。
(三)连续
1、理解函数在一点连续与间断的概念,会判断简单函数(含分段函数)的连续性,理解函数在一点连续与极限存在的关系 。
2、会求函数的间断点及确定其类型。
3、掌握闭区间上连续函数的性质,会运用零点定理证明方程根的存在性 。
4、了解初等函数在其定义区间上连续,并会利用连续性求极限。
二、一元函数微分学
(一)导数与微分
1、理解导数的概念,了解导数的几何意义以及函数可导性与连续性之间的关系,会用定义判断函数的可导性。
2、会求曲线上一点处的切线方程与法线方程。
3、熟练掌握导数的基本公式、四则运算法则以及复合函数的求导方法,会求反函数的导数。
4、掌握隐函数以及由参数方程所确定的函数的求导方法,会使用对数求导法,会求分段函数的导数。
5、了解高阶导数的概念,会求初等函数的高阶导数。
6、理解函数的微分概念及微分的几何意义,掌握微分运算法则及一阶微分形式的不变性,了解可微与可导的关系,会求函数的微分。
(二)中值定理及导数的应用
1、了解罗尔中值定理、拉格朗日中值定理及它们的几何意义。会用罗尔中值定理证明方程根的存在性。会用拉格朗日中值定理证明简单的不等式。
3、会利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式。
4、了解函数极值的概念,掌握求函数的极值和最大(小)值的方法,并且会解简单的应用问题。
5、会判定曲线的凹凸性,会求曲线的拐点。
三、一元函数积分学
(一)不定积分
1、理解原函数与不定积分的概念,掌握不定积分的性质,了解原函数存在定理 。
2、熟练掌握基本的积分公式。
3、熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。
4、掌握不定积分的分部积分法。
(二)定积分
1、理解定积分的概念与几何意义,了解函数可积的条件。
2、掌握定积分的基本性质。
3、了解变上限的定积分是变上限的函数,掌握对变上限定积分求导数的方法。
4、熟练掌握牛顿—莱布尼茨公式。
5、掌握定积分的换元积分法与分部积分法。并会证明一些简单的积分恒等式。
6、理解无穷区间广义积分的概念,掌握其计算方法。
7、掌握直角坐标系下用定积分计算平面图形的面积会求平面图形绕坐标轴旋转所生成的旋转体体积。
四、向量代数与空间解析几何
(一)向量代数
1、理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影 。
2、掌握向量的线性运算、向量的数量积以及两向量的向量积的计算方法。
3、了解两向量平行、垂直的条件。
(二)平面与直线
1、会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行 。
2、会求点到平面的距离。
3、了解直线的一般式方程,会求直线的标准式方程、参数式方程。会判定两直线平行、垂直。
4、会判定直线与平面间的关系(垂直、平行、直线在平面上)。
五、多元函数微积分学
(一)多元函数微分学
1、了解多元函数的概念、二元函数的几何意义及二元函数的极限与连续概念(对计算不作要求)。会求二元函数的定义域。
2、理解偏导数概念,了解全微分概念及其全微分存在的必要条件与充分条件。
3、掌握二元函数的一、二阶偏导数计算方法。
4、掌握复合函数一阶偏导数的求法(含抽象函数)。
5、会求二元函数的全微分(不含抽象函数)。
(二)二重积分
1、理解二重积分的概念及其性质。
2、掌握二重积分在直角坐标系及极坐标系下的计算方法 。
六、无穷级数
(一)数项级数
1、理解级数收敛、发散的概念。掌握级数收敛的必要条件,了解级数的基本性质。
2、掌握正项级数的比较判别法、比值判别法和根值判别法。
3、掌握几何级数、调和级数与P-级数的敛散性。
4、会使用莱布尼茨判别法。
5、理解级数绝对收敛与条件收敛的概念,会判定任意项级数绝对收敛与条件收敛的方法。
四、考试题型
试卷题型单选题、填空题、计算题、综合题。
感谢您阅读2023年湖南女子学院专升本考试科目《数学》考试大纲,本文出自:诚为径统招专升本网,转载需带上本文链接地址:https://tzzsb.cwjedu.com/ksjc/41955
- 温馨提示:
- 因考试政策、内容不断变化与调整,诚为径教育网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!