成人之美,进学有为——学历提升!

2023年宁夏专升本《高等数学》考试大纲

来源:诚为径教育   时间:2023年03月28日
分享:

  考试内容与要求

  要求考生全面掌握高等数学所涉及的基本概念、基本理论和基本运算技能,具有本科学习所必需的抽象思维能力、逻辑推理能力、基本运算能力以及综合运用所学知识分析问题和解决问题的能力。

  一.函数与极限

  1、函数的概念及表示法。函数的有界性、单调性、周期性和奇偶性。反函数、隐函数和复合函数。基本初等函数的性质及其图形。初等函数简单应用问题的函数关系的建立。

  2、数列极限的定义及性质。函数极限的性质及其图形,函数的左极限和右极限,穷小量和无穷大的比较。极限的四则运算。极限的四则运算。极限存在的夹逼准则和单调有界准则,两个重要极限。

  3、连续的概念。函数间断点及其类型, 函数和、差积、商的连续性,反函数及复合函数的连续性。初等函数的连续性,闭区间上连续函数的性质(最大值、最小值定理、介值定理)。

  考试要求:理解函数的概念,掌握函数表示法。了 解函数的有界性、单调性、奇偶性和单调性。理解复合函数的概念,理解反函数及隐函数的概念。掌握基本初等函数的性质及其图形会建立简单应用问题的函数关系。理解数列极限和函数极限的概念,理解函数的左右极限的概念以及极限存在与左右极限之间的关系。

  掌握极限的性质及四则运算法则。掌握极限存在的两个准则,并会利用求极限。掌握利用两个重要极限求极限的方法。理解无穷小、无穷大的概念,会无穷小的比较。 理解函数连续性的概念,会判断函数间断点的类型。会应用初等函数的连续性和闭区间上连续函数的性质(最大值、最小值定理和介值定理)。

  二、二元函数微分学及其应用

  1、导数的概念导数的几何意义和物理意义。平面曲线的切线和法线。函数可导性和连续性之间的关系。函数和、差、积、商的求导法则。复合函数及反函数的求导法则。隐函数的导数及对数求导法。由参数方程所确定的求导法则。基本初等函数的导数公式。初等函数的可导性。高阶导数的概念。

  2、微分的概念微分的几何意义。函数可导与可微的关系。微分四则运算法则。微分形式不变性。

  3、罗尔定理。拉格朗日中值定理、柯西中值定理、泰勒公式、洛必达法则。函数单调性和极限。

  函数的最大值和最小值。函数图形的凹凸性。拐点及渐近线。函数图形的描绘。弧微分。

  三、一元函数积分学及其运用

  1、原函数和不定积分概念。不定积分的基本性质。基本积分公式,不定积分的换元积分法和分部基本法。

  2、定积分的概念。定积分的几何意义和物理意义。定积分的性质,定积分的中值定理。变上限定积分及其导数。牛顿一莱布尼茨公式。 定积分的换元积分法和分布积分法。定积分的简单运用。

  四、向量代数与空间解析几何

  1、向量的概念,向量的线性运算。两向量的数量积和向量积。两向量的夹角两向量垂直和平行的条件。

  2、空间直角坐标系。向量的坐标表达法,单位向量。 向数和方向余

  3、平面方程、直线方程。点到平面和点到直线的距离。平面和平面,直线和直线,平面与直线的相互关系。

  4、空间曲线和曲面。

  五、多元函数微分学

  1、函数的概念。二元函数的极限与连续的概念,有界闭区域上连续函数的性质

  2、偏导数的概念。高阶偏导数的概念。全微分的概念,全微分存在的必要条件和充分条件。多元复合函数、隐函数的求导法则。向导数和梯度的概念。

  3、空间曲线和切线和法平面。曲面的切平面和法线。多元函数的极限和条件极限。拉格朗日乘数法。多元函数的最大值和最小值。

  六、多元函数积分学

  1、二重积分的概念及性质。二重积分在直角坐标和极坐标系中的计算。二重积分的简单证明。

  2、对弧长的曲线积分和对坐标的曲线积分的概念。性质和计算。两类曲线积分的关系。格林公式。

  七、无穷级数

  1、常数项级数及其收敛和发散的概念。常数项级数的基本性质及收敛的必要条件。几何级数与p级数的敛散性。正项级数的比较审敛法。交错级数的莱布尼茨定理。常数项级数的绝对收敛和条件收敛的概念。

  2、函数项级数及其收敛、和函数的概念。幂函数的收敛半径、收敛区间和收敛域。幂级数在其收敛区间内的基本性质。简单幂级数的和函数求法。函数泰勒级数的概念。函数可展开为泰勒级数的充分必要条件。函数展开为幂级数的唯一性。

  八、常微分方程

  1、常微分方程的概念。微分方程的阶、解、通解及特解的概念。初始条件,初值问题及其特解。线性微分方程。

  2、变量可分离的微分方程。- 阶线性微分方程。可降阶的高阶微分方程。

  3、线性微分方程解的性质和通解的结构定理。二阶常系数线性齐次微分方程的解法。简单的二阶常系数的线性非齐次微分方程的解法。

  4、微分方程的简单应用问题。

  感谢您阅读2023年宁夏专升本《高等数学》考试大纲,本文出自:诚为径统招专升本网,转载需带上本文链接地址:https://tzzsb.cwjedu.com/ksjc/44787

温馨提示:
因考试政策、内容不断变化与调整,诚为径教育网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!

微信公众号

微信公众号

专升本备考交流群

专升本备考交流群

2023年宁夏专升本《高等数学》考试大纲发布,考生可以通过本大纲了解2023年宁夏专升本高等数学考试内容和考试要求。

关于我们 联系我们 用户协议 网站地图

联系地址:湖南省长沙市雨花区韶山南路123号华翼府A座2628
版权所有:湖南晨润教育科技有限公司  出版物经营许可证:第4301042021097号

免责说明:本站部分内容由诚为径教育从互联网搜集编辑整理而成,版权归原作者所有,如有冒犯,请联系我们删除。