成人之美,进学有为——学历提升!

2023年湖北文理学院《高等数学》专升本考试大纲

来源:诚为径教育   时间:2023年03月28日
分享:

  (2)熟练掌握洛必达法则求“0/0”、“∞/ ∞”、“0•∞”、“∞-∞”、“1∞”、“00”和“∞0”型未定式的极限方法;

  (3)掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法,会利用函数的增减性证明简单的不等式;

  (4)理解函数极值的概念,掌握求函数的极值和最大(小)值的方法,并且会解简单的应用问题;

  (5)会判定曲线的凹凸性,会求曲线的拐点;

  (6)会求曲线的水平渐近线与垂直渐近线;

  (7)会作出简单函数的图形。

  第三章 一元函数积分学

  (一)不定积分

  考试内容:

  (1)不定积分的概念:原函数与不定积分的定义 原函数存在定理 不定积分的性质;

  (2)基本积分公式;

  (3)换元积分法:第一换元法(凑微分法) 第二换元法;

  (4)分部积分法;

  (5)一些简单有理函数的积分。

  基本要求:

  (1)理解原函数与不定积分概念及其关系,掌握不定积分性质,了解原函数存在定理;

  (2)熟练掌握不定积分的基本公式;

  (3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换);

  (4)熟练掌握不定积分的分部积分法;

  (5)会求简单有理函数的不定积分。

  (二)定积分

  考试内容:

  (1)定积分的概念:定积分的定义及其几何意义 可积条件;

  (2)定积分的性质;

  (3)定积分的计算:变上限的定积分 牛顿一莱布尼茨(Newton - Leibniz)公式 换元积分法 分部积分法;

  (4)无穷区间的广义积分;

  (5)定积分的应用:平面图形的面积 旋转体的体积 物体沿直线运动时变力所作的功。

  基本要求:

  (1)理解定积分的概念与几何意义,了解可积的条件;

  (2)掌握定积分的基本性质;

  (3)理解变上限的定积分是变上限的函数,掌握对变上限定积分求导数的方法;

  (4)掌握牛顿—莱布尼茨公式;

  (5)掌握定积分的换元积分法与分部积分法;

  (6)理解无穷区间广义积分的概念,掌握其计算方法;

  (7)掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体体积;会用定积分求沿直线运动时变力所作的功。

  第四章 向量代数与空间解析几何

  (一)向量代数

  考试内容:

  (1)向量的概念:向量的定义 向量的模 单位向量 向量在坐标轴上的投影

  向量的坐标表示法 向量的方向余弦;

  (2)向量的线性运算:向量的加法 向量的减法 向量的数乘;

  (3)向量的数量积二向量的夹角 二向量垂直的充分必要条件;

  (4)二向量的向量积 二向量平行的充分必要条件。

  基本要求:

  (1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影;

  (2)掌握向量的线性运算、向量的数量积与向量积的计算方法;

  (3)掌握二向量平行、垂直的条件。

  (二)平面与直线

  考试内容:

  (1)常见的平面方程:点法式方程 一般式方程;

  (2)两平面平行的条件 两平面垂直的条件 点到平面的距离;

  (3)空间直线方程:标准式方程(又称对称式方程或点向方程) 一般式方程 参数式方程;

  (4)两直线平行的条件 两直线垂直的条件 直线在平面上的条件。

  基本要求:

  (1)会求平面的点法式方程、一般式方程。会判定两平面的垂直、平行;

  (2)会求点到平面的距离;

  (3)了解直线的一般式方程,会求直线的标准式方程、参数式方程会判定两直线平行、垂直;

  (4)会判定直线与平面间的关系(垂直、平行、直线在平面上)。

  (三)简单的二次曲面

  考试内容:

  球面 母线平行于坐标轴的柱面 旋转抛物面 圆锥面 椭球面;

  基本要求:

  了解球面、母线平行于坐标轴的柱面、旋转抛物面、圆锥面和椭球面的方程及其图形。

  第五章 多元函数微积分

  (一)多元函数微分学

  考试内容:

  (1)多元函数:多元函数的定义 二元函数的定义域 二元函数的几何意义

  二元函数极限与连续的概念;

  (2)偏导数与全微分:偏导数 全微分 二阶偏导数;

  (3)复合函数的偏导数;

  (4)隐函数的偏导数;

  (5)二元函数的无条件极值及条件极值。

  基本要求:

  (1)了解多元函数的概念、二元函数的几何意义及二元函数的极限与连续概念(对计算不作要求)。会求二元函数的定义域;

  (2)理解偏导数概念,了解全微分概念,知道全微分存在的必要条件与充分条件;

  (3)掌握二元函数的一、二阶偏导数计算方法;

  (4)掌握复合函数一阶偏导数的求法;

  (5)会求二元函数的全微分;

  (6)掌握由方程F(x,y,z)=0所确定的隐函数z=z(x,y)的一阶偏导数的计算方法;

  (7)会求二元函数的无条件极值及条件极值。

  (二)二重积分

  考试内容:

  (1)二重积分的概念:二重积分的定义 二重积分的几何意义;

  (2)二重积分的性质;

  (3)二重积分的计算;

  (4)二重积分的应用。

  基本要求:

  (1)理解二重积分的概念及其性质;

  (2)掌握二重积分在直角坐标系及极坐标系下的计算方法;

  (3)会用二重积分解决简单的应用问题(限于空间封闭曲面所围成的有界区域的体积、平面薄板质量)。

  (三)第一类曲线积分与第二类曲线积分

  考试内容:

  第一类曲线积分与第二类曲线积分的概念及其计算方法;

  格林(Green)公式;

  平面曲线积分与路径无关条件。

  基本要求:

  (1)理解第一类曲线积分与第二类曲线积分的概念及其性质;

  (2)掌握第一类曲线积分与第二类曲线积分的计算方法;

  (3)掌握格林(Green)公式;

  (4)掌握平面曲线积分与路径无关条件。

  第六章 无穷级数

  (一)数项级数

  感谢您阅读2023年湖北文理学院《高等数学》专升本考试大纲,本文出自:诚为径统招专升本网,转载需带上本文链接地址:https://tzzsb.cwjedu.com/ksjc/44731/p2

1 2 3
温馨提示:
因考试政策、内容不断变化与调整,诚为径教育网站提供的以上信息仅供参考,如有异议,请考生以权威部门公布的内容为准!

微信公众号

微信公众号

专升本备考交流群

专升本备考交流群

2023年湖北文理学院专升本《大学英语》考试大纲发布,考生可以通过本大纲了解2023年湖北文理学院专升本《大学英语》考试内容和考试要求。

关于我们 联系我们 用户协议 网站地图

联系地址:湖南省长沙市雨花区韶山南路123号华翼府A座2628
版权所有:湖南晨润教育科技有限公司  出版物经营许可证:第4301042021097号

免责说明:本站部分内容由诚为径教育从互联网搜集编辑整理而成,版权归原作者所有,如有冒犯,请联系我们删除。